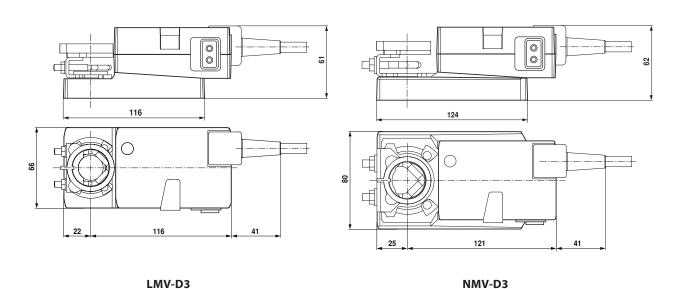


VAV SERVOMOTEUR: BELIMO

• Motorisation BELIMO et KLIMA pour registre à débit variable (ne peut pas être vendu seul)


Utilisation

- Adaptable uniquement sur les registres à débit variable :
 - VAV-KC
 - VAV-KR
- Communication: MP-Bus (-MP), Modbus (-MOD), BACnet (-MOD-BAC) ou KNX (-KNX)
- Sans communication : No Bus (-MF)
- Débits d'air réglables par un outil de paramétrage externe

Accessoires

- Outil de paramétrage ZTH pour moteur de registre BELIMO et KLIMA
- Outil de paramétrage ML-SER pour transmetteur PRODUAL, nécessaire pour le paramétrage en Modbus

Caractéristiques dimensionnelles (en mm)

Caractéristiques techniques

Marque		BELIMO	
		LMV-D3	NMV-D3
Type de moteur		En standard (Ø100 au Ø500 mm)	En standard (Ø630 mm)
Couple		5 Nm	10 Nm
	Tension nominal	24 VAC, 50/60 Hz 24 VDC	
Alimentation	Tolérance	19,2 28,8 VAC 21,6 28,8 VDC	
	Puissance consommée	2 W	3 W
	Dimensionnement	4 VA	5 VA
	Plage de travail	0 60	0 Pa
Condo do proceion différentiallo	Plage d'utilisation	50 45	0 Pa
Sonde de pression différentielle	Capacité de surcharge	± 3000) Pa
	Position de montage	Indiffér	ente
	Q _{nom}	Valeur nominale pour débit noi	minal, réglée par l'instalateur
	Q _{max}	20 100%	
Valeurs ajustables	Q_{min}	0 100%	
	Q _{mid}	50% de Q _n	_{iin} à Q _{max}
		0(2) 10 VDC	R > 100 kΩ
	Signal de commande sur Y	$0(4) \dots 20 \text{ mA R} = 500 \Omega$	
Signal		0 10 VDC ajustable	
	Signal de mesure de débit d'air U	0(2) 10 VD0	2 max. 0,5A
Opérations et services		Boitier ZTH, er	nbrochable
	Angle de rotation	Ajustable 0 95°	
	Indication de la position	Visuelle	
Servomoteur	Section d'axe	Ronde : 10 20 mm Carré : 8 16 mm	
	Raccordement	4 x 0,75 mm²	
	Longueur de câble	0,9 m	
	Niveau de puissance sonore	< 35 dB(A)	
	Classe de protection	III Basse tension de protection	
	Indice de protection	IP 54	
	Fonctionnement	Type 1 (EN 60730-1)	
	Tension assignée de choc	0,5 kV (EN 60730-1)	
Sécurité	Degré de pollution de l'environnement	2 (EN 60730-1)	
	Température de fonctionnement	0 +50°C	
	Température de stockage	-20 +80°C	
	Humidité relative	5 95 %HR	
	Maintenance	Sans entretien	
	Dimensions	138 x 66 x 61 mm 146 x 80 x 62	
Caractéristiques dimensionnelles	Poids	0,5 kg	0,7 kg

Servomoteurs : Avec ou sans protocole de gestion

• No Bus (-MF):

Н	ors protocole de gestion	Туре	No bus

• MP-Bus (-MP), en standard :

Protocole de gestion	Туре	PP/MP-Bus
	Adresse	MP 1 8 (fonctionnement classique : PP)
	Régulateur DDC	Régulateur DDC / Régulateur programmable avec interface MP intégrée

• Modbus (-MOD):

Protocole de gestion	Type	Modbus RTU

BACnet (-MOD-BAC) :

• KNX (-KNX):

Protocole de gestion	Туре	KNXTP
	Nombre d'éléments	Max. 64
	Mode de configuration	S mode
	Logiciel	ETS4 ou plus
	Paramétrage	ZTH

Glossaire

Vous trouverez dans ce chapitre, les produits présentés dans les principes de fonctionnement disponible dans ce document. Il s'agit d'une liste non exhaustive des fonctionnements possibles.

VAV-KC: Registre circulaire à débit variable équipé d'un moteur Belimo.

VAV-KR: Registre rectangulaire à débit variable équipé d'un moteur Belimo.

WCRX/P: Transmetteur de CO2 et de température d'ambiance

DCRX/P: Transmetteur de CO2 et de température en gaine

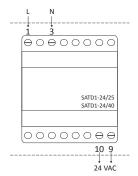
HDH-M: Transmetteur de CO2 et de température d'ambiance, communication Modbus RTU

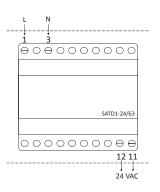
HDK-M: Transmetteur de CO2 et de température en gaine, communication Modbus RTU

CA1: Thermostat d'ambiance

CDC1: Thermostat de gaine

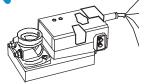
RAM100: Thermostat change-




SATD1-24: Transformateur de sécurité 230V / 24V

Alimentation électrique

L'alimentation des servomoteurs et des éléments de régulation est en 24 VAC/VDC 50/60 Hz.. Lorsque le réseau est en 230VAC 50/60 Hz, il est possible d'utiliser des transformateurs 230 VAC / 24 VAC (SATD-1).


• Raccordement électrique du SATD-1 :

Modèles	Puissance (VA)
SATD1-24/25	25
SATD1-24/40	40
SATD1-24/63	63

CAIROX

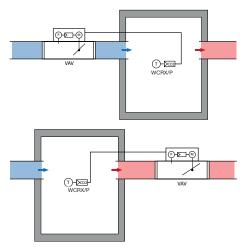
N°	Couleur	Fonction
1	Noir	Alimentation 24 VAC/VDC
2	Rouge	
3	Blanc	Signal de référence / Sonde
5	Orange	Signal de valeur effective Raccordement MP-Bus (-MP)

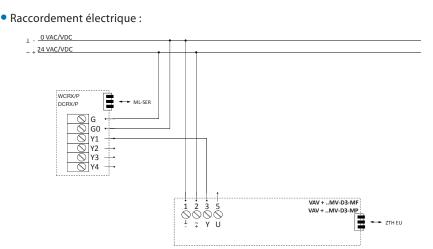
VAV SERVOMOTEUR : BELIMO ET KLIMA

Contrôle du taux de CO2 en ambiance, régulation sur le soufflage ou la reprise

• Principe de fonctionnement :

Un transmetteur de CO2 est placé en ambiance.

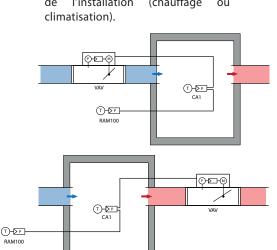

Le transmetteur mesure le taux de CO2 du local puis transmet un signal au registre VAV, le débit de soufflage ou de reprise s'ajuste en fonction des valeurs Qmin et Qmax paramétrées (ZTH).

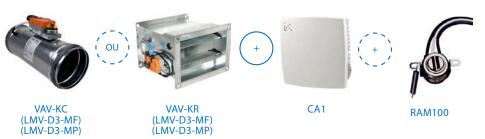


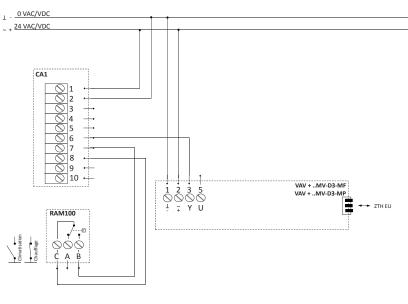
VAV-KC (LMV-D3-MF) (LMV-D3-MP)

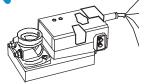
VAV-KR (I MV-D3-MF) (LMV-D3-MP)

WCRX/P




Contrôle de la température en ambiance, régulation sur le soufflage ou la reprise


• Principe de fonctionnement :


Un thermostat d'ambiance est placé en ambiance.

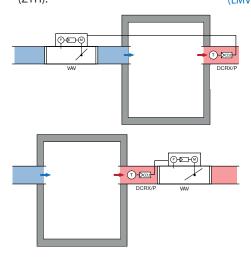
Le thermostat mesure la température du local puis transmet un signal au registre VAV, le débit de soufflage ou de reprise s'ajuste en fonction des valeurs Qmin et Qmax paramétrées (ZTH). Un thermostat change-over automatique peut être placé sur le tube d'alimentation de la batterie change-over afin de déterminer mode de fonctionnement (chauffage de l'installation

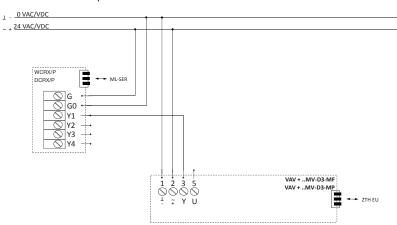
N°	Couleur	Fonction
1	Noir	Alimantation 24MACA/DC
2	Rouge	Alimentation 24 VAC/VDC
3	Blanc	Signal de référence / Sonde
5	Orange	Signal de valeur effective Raccordement MP-Bus (-MP)

Contrôle du taux de CO2 en gaine, régulation sur le soufflage ou la reprise

• Principe de fonctionnement : Un transmetteur de CO2 est placé en

gaine sur le réseau de reprise. Le transmetteur mesure le taux de CO2 du local puis transmet un signal au registre VAV, le débit de soufflage ou de reprise s'ajuste en fonction des valeurs Qmin et Qmax paramétrées (ZTH).




VAV-KC (LMV-D3-MF) (LMV-D3-MP)

VAV-KR (IMV-D3-MF) (LMV-D3-MP)

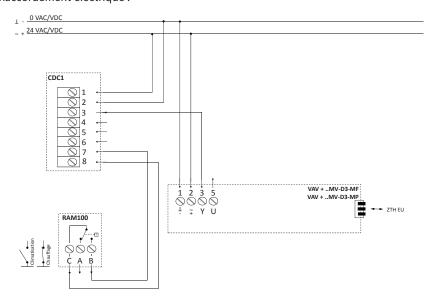
DCRX/P

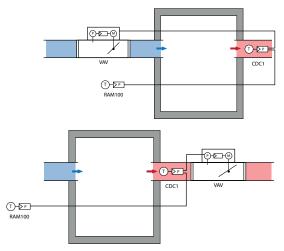
Contrôle de la température en gaine, régulation sur le soufflage ou la reprise

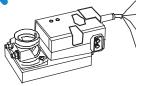
• Principe de fonctionnement :

Un thermostat est placé en gaine sur le réseau de reprise.

Le thermostat mesure la température du local puis transmet un signal au registre VAV, le débit de soufflage ou de reprise s'ajuste en fonction des valeurs Qmin et Qmax paramétrées (ZTH). Un thermostat change-over automatique peut être placé sur le tube d'alimentation de la batterie change-over afin de déterminer le mode de fonctionnement l'installation (chauffage de climatisation).


CDC1




(LMV-D3-MF) (LMV-D3-MP)

RAM100

N°	Couleur	Fonction
1	Noir	- Alimentation 24 VAC/VDC
2	Rouge	
3	Blanc	Signal de référence / Sonde
5	Orange	Signal de valeur effective Raccordement MP-Bus (-MP)

Contrôle du taux de CO2 en ambiance, régulation sur le soufflage et la reprise (en parallèle)

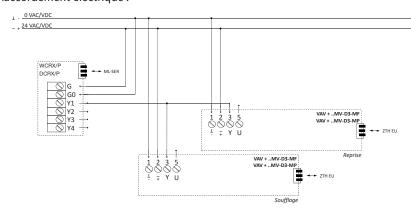
VAV-KC

(LMV-D3-MF) (LMV-D3-MP)

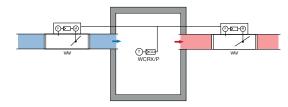
• Principe de fonctionnement :

Un transmetteur de CO2 est placé en ambiance.

Le transmetteur mesure le taux de CO2 du local puis transmet un signal aux registres VAV, les débits de soufflage et de reprise s'ajustent en fonction des valeurs Qmin et Qmax paramétrées (ZTH). Ce système est particulièrement adapté lorsque les dimensions et les débits paramétrés seront différentes entre le soufflage et la reprise, comme par exemple dans le cas d'un système à deux registres VAV au soufflage et un seul à la reprise. Les débits pourront être fixés indépendamment entre le soufflage et la reprise.



VAV-KR

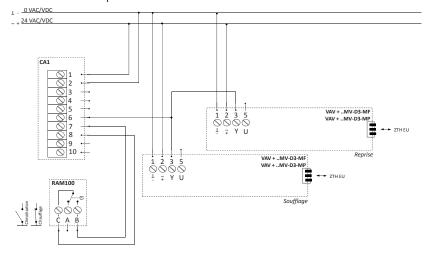

(IMV-D3-MF)

(LMV-D3-MP)

Raccordement électrique :

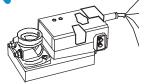
WCRX/P

Contrôle de la température en ambiance, régulation sur le soufflage et la reprise (en parallèle)


• Principe de fonctionnement :

Un thermostat d'ambiance est placé en ambiance.

Le thermostat mesure la température du local puis transmet un signal aux registres VAV, les débits de soufflage et de reprise s'ajustent en fonction des valeurs Qmin et Qmax paramétrées (ZTH). Un thermostat change-over automatique peut être placé sur le tube d'alimentation de la batterie changeover afin de déterminer le mode de fonctionnement de l'installation chauffage ou climatisation). Ce système est particulièrement adapté lorsque les dimensions et les débits paramétrés seront différentes entre le soufflage et la reprise, comme par exemple dans le cas d'un système à deux registres VAV au soufflage et un seul à la reprise. Les débits pourront être fixés indépendamment entre le soufflage et la reprise.


• Raccordement électrique :

(T)-||E||-

(T)-EPI-

N°	Couleur	Fonction
1	Noir	Alimantation 24 VACA/DC
2	Rouge	Alimentation 24 VAC/VDC
3	Blanc	Signal de référence / Sonde
5	Orange	Signal de valeur effective Raccordement MP-Bus (-MP)

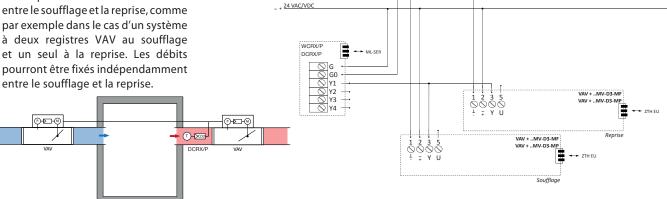
Contrôle du taux de CO2 en gaine, régulation sur le soufflage et la reprise (en parallèle)

• Principe de fonctionnement :

Un transmetteur de CO2 est placé en gaine sur le réseau de reprise.

Le transmetteur mesure le taux de CO2 du local puis transmet un signal aux registres VAV, les débits de soufflage et de reprise s'ajustent en fonction des valeurs Omin et Omax paramétrées (ZTH).

Ce système est particulièrement adapté lorsque les dimensions et les débits paramétrés seront différentes entre le soufflage et la reprise, comme par exemple dans le cas d'un système à deux registres VAV au soufflage et un seul à la reprise. Les débits pourront être fixés indépendamment


(LMV-D3-MF) (LMV-D3-MP)

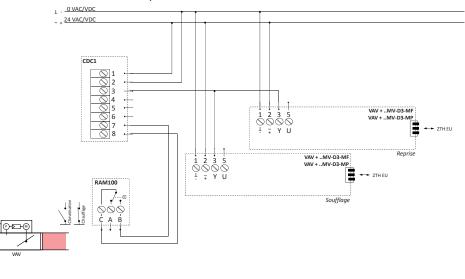
VAV-KR (LMV-D3-MF) (I.MV-D3-MP)

DCRX/P

• Raccordement électrique :

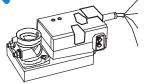
_ O VAC/VDC

Contrôle de la température en gaine, régulation sur le soufflage et la reprise (en parallèle)


• Principe de fonctionnement :

Un thermostat est placé en gaine sur le réseau de reprise.

Le thermostat mesure la température du local puis transmet un signal aux registres VAV, les débits de soufflage et de reprise s'ajustent en fonction des valeurs Omin et Omax paramétrées (ZTH). Un thermostat change-over automatique peut être placé sur le tube d'alimentation batterie change-over afin de déterminer le mode de fonctionnement de l'installation (chauffage ou climatisation). Ce système est particulièrement adapté lorsque les dimensions et les débits paramétrés seront différentes entre le soufflage et la reprise, comme par exemple dans le cas d'un système à deux registres VAV au soufflage et un seul à la reprise. Les débits pourront être fixés indépendamment entre le soufflage et la reprise.


• Raccordement électrique :

(PHF HM)

T-DP

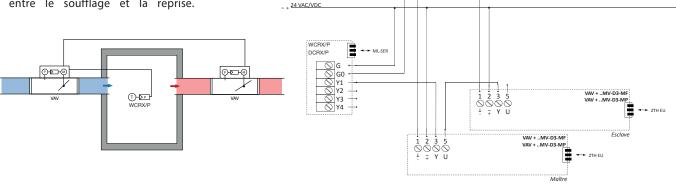
N°	Couleur	Fonction
1	Noir	All I AMAGANG
2	Rouge	Alimentation 24 VAC/VDC
3	Blanc	Signal de référence / Sonde
5	Orange	Signal de valeur effective Raccordement MP-Bus (-MP)

Contrôle du taux de CO2 en ambiance, régulation sur le soufflage et la reprise (en maître/esclave)

• Principe de fonctionnement :

Un transmetteur de CO2 est placé en ambiance.

Le transmetteur mesure le taux de CO2 du local puis transmet un signal aux registres VAV, les débits de soufflage et de reprise s'ajustent en fonction des valeurs Qmin et Qmax paramétrées (ZTH). Ce système est particulièrement adapté lorsque les dimensions et les débits seront identiques entre le soufflage et la reprise.


VAV-KC (LMV-D3-MF) (LMV-D3-MP)

VAV-KR (IMV-D3-MF) (LMV-D3-MP)

WCRX/P

• Raccordement électrique :

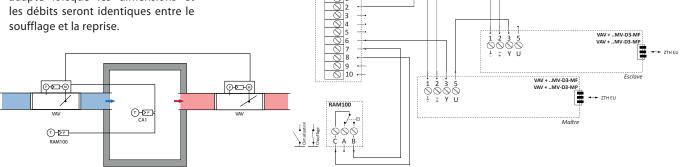
0 VAC/VDC

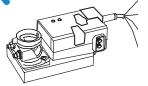
Contrôle de la température en ambiance, régulation sur le soufflage et la reprise (en maître/esclave)

• Principe de fonctionnement :

Un thermostat est placé en ambiance. Le thermostat mesure la température du local puis transmet un signal aux registres VAV, les débits de soufflage et de reprise s'ajustent en fonction des valeurs Qmin et Qmax paramétrées (ZTH).

Un thermostat change-over automatique peut être placé sur le tube d'alimentation de la batterie change-over afin de déterminer le mode de fonctionnement l'installation (chauffage ou climatisation).


Ce système est particulièrement adapté lorsque les dimensions et soufflage et la reprise.

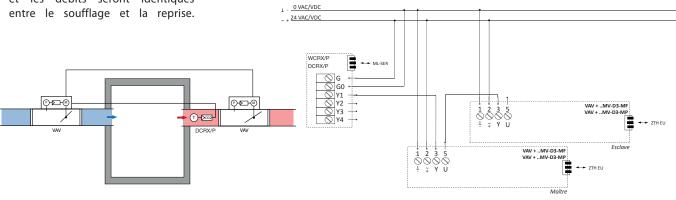


Raccordement électrique :

L - O VAC/VDC

24 VAC/VDC

N°	Couleur	Fonction
1	Noir	Alimentation 24 VAC/VDC
2	Rouge	
3	Blanc	Signal de référence / Sonde
5	Orange	Signal de valeur effective Raccordement MP-Bus (-MP)


Contrôle du taux de CO2 en gaine, régulation sur le soufflage et la reprise (en maître/esclave)

• Principe de fonctionnement :

Un transmetteur de CO2 est placé en gaine sur le réseau de reprise. Le transmetteur mesure le taux de CO2 du local puis transmet un signal aux registres VAV, les débits de soufflage et de reprise s'ajustent en fonction des valeurs Qmin et Qmax paramétrées (ZTH). Ce système est particulièrement adapté lorsque les dimensions et les débits seront identiques entre le soufflage et la reprise.

• Raccordement électrique :

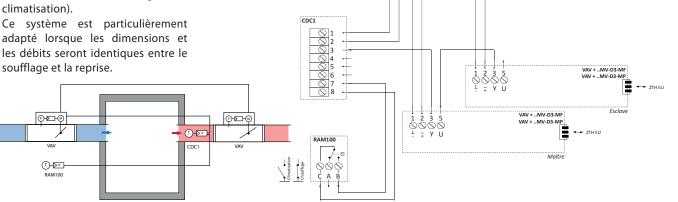
Contrôle de la température en gaine, régulation sur le soufflage et la reprise (en maître/esclave)

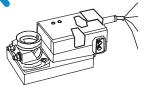
• Principe de fonctionnement :

Un thermostat est placé en gaine sur le réseau de reprise.

Le thermostat mesure la température du local puis transmet un signal aux registres VAV, les débits de soufflage et de reprise s'ajustent en fonction des valeurs Qmin et Qmax paramétrées (ZTH).

Un thermostat change-over automatique peut être placé sur le tube d'alimentation de la batterie change-over afin de déterminer mode de fonctionnement l'installation (chauffage de climatisation).


soufflage et la reprise.



• Raccordement électrique :

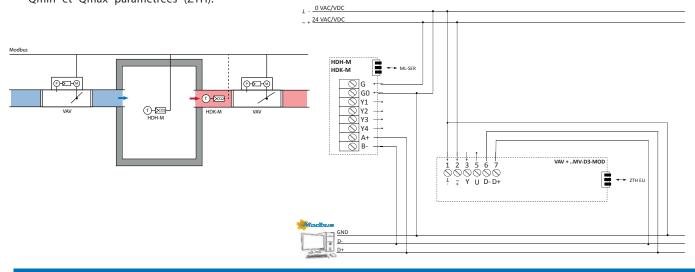
_ O VAC/VDC

~ + 24 VAC/VDC

N°	Couleur	Fonction
1	Noir	Alimentation 24 VAC/VDC
2	Rouge	
3		
5	Orange	Raccordement MP-Bus
6	Rose	Modbus / BACnet (RS485)
7	Gris	

(LMV-D3-MOD)

Contrôle du taux de CO2 en ambiance ou en gaine, communication Modbus RTU


(LMV-D3-MOD)

• Principe de fonctionnement :

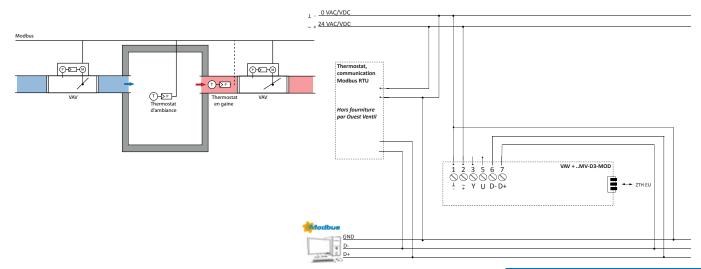
Un transmetteur de CO2 est placé en ambiance ou gaine sur le réseau de reprise. Le transmetteur mesure le taux de CO2 du local puis transmet un signal à la GTC qui transmet ensuite le signal au registre VAV, le débit de soufflage ou de reprise s'ajuste en fonction des valeurs Qmin et Qmax paramétrées (ZTH).

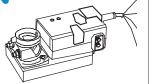
Raccordement électrique :

Contrôle de la température en ambiance ou en gaine, communication Modbus RTU

• Principe de fonctionnement :

Un thermostat est placé en ambiance ou en gaine sur le réseau de reprise. Le thermostat mesure la température du local puis transmet un signal à la GTC qui transmet ensuite le signal au registre VAV, le débit de soufflage ou de reprise s'ajuste en fonction des valeurs Qmin et Qmax paramétrées (ZTH).




VAV-KC (LMV-D3-MOD)

(LMV-D3-MOD)

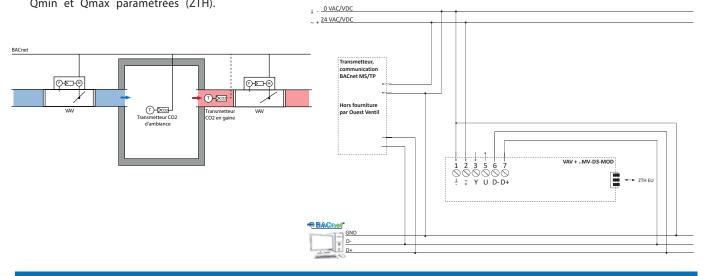
Thermostat, communication Modbus RTU

N°	Couleur	Fonction
1	Noir	Alimentation 24 VAC/VDC
2	Rouge	
3		
5	Orange	Raccordement MP-Bus
6	Rose	Modbus / BACnet (RS485)
7	Gris	

Contrôle du taux de CO2 en ambiance ou en gaine, communication BACnet MS/TP

• Principe de fonctionnement :

Un transmetteur de CO2 est placé en ambiance ou gaine sur le réseau de reprise. Le transmetteur mesure le taux de CO2 du local puis transmet un signal à la GTC qui transmet ensuite le signal au registre VAV, le débit de soufflage ou de reprise s'ajuste en fonction des valeurs Qmin et Qmax paramétrées (ZTH).



(LMV-D3-MOD)

VAV-KR (LMV-D3-MOD)

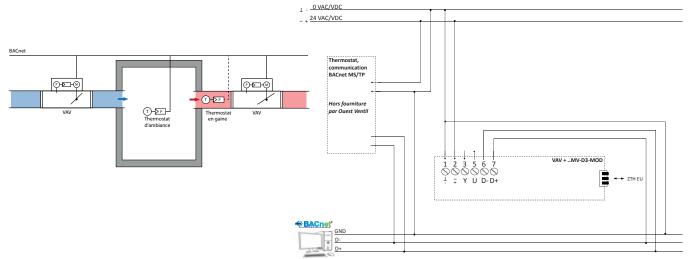
Transmetteur, communication BACnet MS/TP

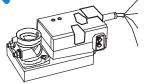
• Raccordement électrique :

Contrôle de la température en ambiance ou en gaine, communication BACnet MS/TP

• Principe de fonctionnement :

Un thermostat est placé en ambiance ou en gaine sur le réseau de reprise. Le thermostat mesure la température du local puis transmet un signal à la GTC qui transmet ensuite le signal au registre VAV, le débit de soufflage ou de reprise s'ajuste en fonction des valeurs Qmin et Qmax paramétrées (ZTH).





VAV-KC (LMV-D3-MOD)

VAV-KR (LMV-D3-MOD)

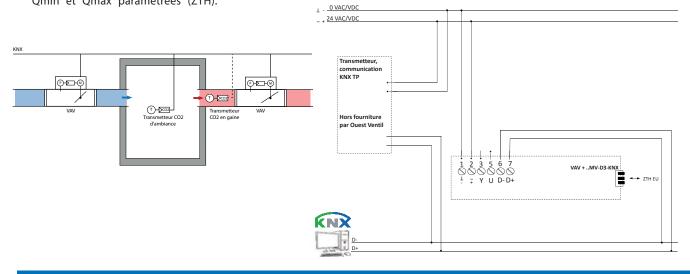
Thermostat, communication BACnet MS/TP

N°	Couleur	Fonction
1	Noir	Alimentation 24 VAC/VDC
2	Rouge	
3		
5	Orange	Raccordement PP
6	Rose	KNX / LonWorks
7	Gris	

Contrôle du taux de CO2 en ambiance ou en gaine, communication KNX TP

• Principe de fonctionnement :

Un transmetteur de CO2 est placé en ambiance ou gaine sur le réseau de reprise. Le transmetteur mesure le taux de CO2 du local puis transmet un signal à la GTC qui transmet ensuite le signal au registre VAV, le débit de soufflage ou de reprise s'ajuste en fonction des valeurs Qmin et Qmax paramétrées (ZTH).



(LMV-D3-KNX)

VAV-KR (LMV-D3-KNX)

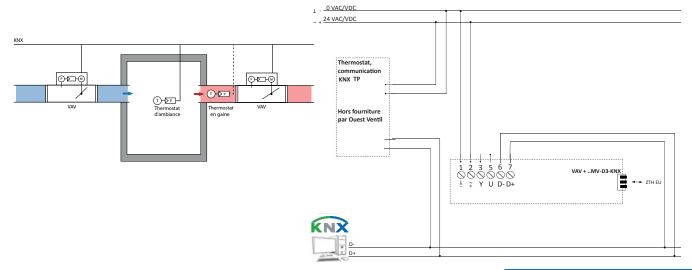
Transmetteur, communication KNX TP

• Raccordement électrique :

Contrôle de la température en ambiance ou en gaine, communication KNX TP

• Principe de fonctionnement :

Un thermostat est placé en ambiance ou en gaine sur le réseau de reprise. Le thermostat mesure la température du local puis transmet un signal à la GTC qui transmet ensuite le signal au registre VAV, le débit de soufflage ou de reprise s'ajuste en fonction des valeurs Qmin et Qmax paramétrées (ZTH).



VAV-KC (LMV-D3-KNX)

(LMV-D3-KNX)

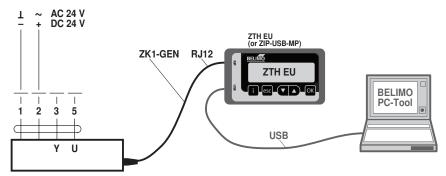
Thermostat, communication KNX TP

Contrôle de la température et du taux de CO2 en ambiance ou en gaine

Les transmetteurs de la gamme HDH (- / -M / -BAC) et HDK (- / -M / -BAC) permettent de contrôler simultanément la température et le taux de CO2, dans ce cas, c'est le signal maximal qui est pris en compte pour la commande du servomoteur. Exemple:

Température =
$$3 \text{ V}$$

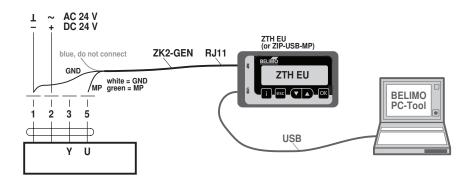
 $CO2 = 6 \text{ V}$ Signal = 6 V


Les branchements sont les mêmes que dans le cas d'un contrôle du taux de CO2, seul un paramétrage complémentaire du transmetteur (ML-SER) est nécessaire.

Réglages et diagnostic

Raccordement local

Les réglages et le diagnostic du servomoteur peuvent être effectués facilement et rapidement avec le PC-Tool de Belimo ou avec l'outil de service ZTH-EU.


Lors de l'utilisation du PC-Tool, le ZTH EU sert de convertisseur d'interface.

Connexion à distance

Le servomoteur peut communiquer avec le PC-Tool de Belimo ou avec l'outil de service ZTH-EU via la connexion MP (fil 5). Le raccordement peut s'effectuer en mode de fonctionnement dans la boîte de jonction. En mode MP-Bus, l'outil est connecté au maître MP.

Lors de l'utilisation du PC-Tool, le ZTH EU sert de convertisseur d'interface.

Accessoires

MS-SER Outil de paramétrage PRODUAL